Goals:

- Define limits of functions (one-sided and two-sided).
- Compute limits of functions graphically and numerically.

Intuition:

The limit of a function asks "what value is this function getting near to?" This is not always the same as the value of the function.

Graphically:

$\lim _{x \rightarrow 2} f(x)=1$
$\lim _{x \rightarrow 1^{+}} g(x)=4$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} h(x) \text { DNE, } \infty \\
& \lim _{x \rightarrow 3^{+}} h(x) \text { DNE },-\infty \\
& \lim _{x \rightarrow 3} h(x) \text { DNE } \\
& h(3)=0 \\
& \lim _{x \rightarrow \infty} h(x)=2
\end{aligned}
$$

$$
\lim _{x \rightarrow 4} w(x)=2
$$

$$
\lim _{x \rightarrow 1^{-}} g(x)=2
$$

$$
g(1)=2
$$

Numerically:

x	$\frac{e^{x}-1}{x}$		7 6	1		
0	undefined	Guess $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$:	4			
0.01	≈ 1.00502	1	3 2			
-0.01	≈ 0.99502		-			
			$-4-3-2-11$	12	3	4
0.001	≈ 1.0005		-2			

Some Definitions:

- LIMIT If we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a (on either side of a) but not equal to a, we say "the limit of $f(x)$, as x approaches a, equals L " and we write,

$$
\lim _{x \rightarrow a} f(x)=L
$$

- RIGHT-HAND LIMIT We say "the right-hand limit of $f(x)$, as x approaches a [or the limit of $f(x)$ as x approaches a from the right], equals L " and we write,

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close but not equal to a AND \qquad

- LEFT-HAND LIMIT We say "the left-hand limit of $f(x)$, as x approaches a [or the limit of $f(x)$ as x approaches a from the left], equals $L "$ and we write,

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close but not equal to a AND \qquad

FACT: For a function $f(x)$,
$\lim _{x \rightarrow a} f(x)=L$ if and only if $\quad \lim _{x \rightarrow a^{+}} f(x)=L \quad$ and $\quad \lim _{x \rightarrow a^{-}} f(x)=L$.

Consider the function

$$
f(x)=\frac{x+2}{x^{2}-5 x-14}
$$

Use at least five values of x to approximate $\lim _{x \rightarrow-2} f(x)$ and sketch the graph (including the scale).

x	$\frac{x+2}{x^{2}-5 x-14}$
-1.9	-0.1124
-2.1	-0.1099
-1.95	-0.1117
-2.05	-0.1105
-1.99	-0.1112
-2.01	-0.111

Sketch a function $f(x)$ satisfying the following:

- $\lim _{x \rightarrow-\infty} f(x)=0$
- $\lim _{x \rightarrow \infty} f(x)=\infty$
- $\lim _{x \rightarrow-1^{-}} f(x)=-2$
- $\lim _{x \rightarrow-1^{+}} f(x)=2$
- $f(-1)=0$
- $\lim _{x \rightarrow 1^{+}} f(x)=2$
- $\lim _{x \rightarrow 1^{-}} f(x)=-1$

