$\lim_{x \to 4} w(x) = 2$

w(4) = 2

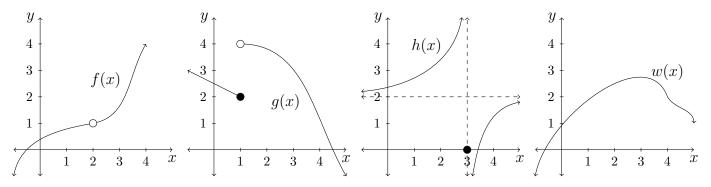
Goals:

- Define limits of functions (one-sided and two-sided).
- Compute limits of functions graphically and numerically.

Intuition:

The limit of a function asks "what value is this function getting near to?" This is not always the same as the value of the function.

Graphically:



 $\lim_{x \to 2} f(x) = 1 \qquad \lim_{x \to 1^+} g(x) = 4 \qquad \lim_{x \to 3^-} h(x) \text{ DNE}, \infty$ $f(2) \text{ undefined} \qquad \lim_{x \to 1^-} g(x) = 2 \qquad \lim_{x \to 3^+} h(x) \text{ DNE}, -\infty$ $\lim_{x \to 1} g(x) \text{ DNE} \qquad \lim_{x \to 3} h(x) \text{ DNE}$ $g(1) = 2 \qquad h(3) = 0$ $\lim_{x \to \infty} h(x) = 2$

Numerically:

x	$\frac{e^x - 1}{x}$	_	$\begin{pmatrix} 7 \\ 6 \end{pmatrix}$
0	undefined	Guess $\lim_{x\to 0} \frac{e^x - 1}{x}$:	5 + 4 +
0.01	≈ 1.00502	1	
-0.01	≈ 0.99502		-4 - 3 - 2 - 1 1 2 3 4 5
0.001	≈ 1.0005		$ \begin{array}{c} -1 \\ -2 \end{array} $

Some Definitions:

• **LIMIT** If we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a (on either side of a) but not equal to a, we say "the limit of f(x), as x approaches a, equals L" and we write,

$$\lim_{x \to a} f(x) = L.$$

• RIGHT-HAND LIMIT We say "the right-hand limit of f(x), as x approaches a [or the limit of f(x) as x approaches a from the right], equals L" and we write,

$$\lim_{x \to a^+} f(x) = L.$$

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close but not equal to a AND x greater than a (on the right-hand side of a)

• **LEFT-HAND LIMIT** We say "the left-hand limit of f(x), as x approaches a [or the limit of f(x) as x approaches a from the left], equals L" and we write,

$$\lim_{x \to a^{-}} f(x) = L.$$

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close but not equal to a AND _____ x less than a (on the left-hand side of a)

FACT: For a function f(x),

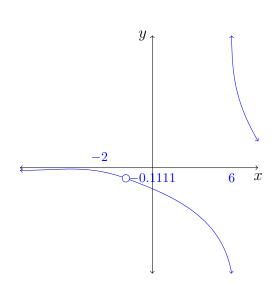
 $\lim_{x\to a} f(x) = L \text{ if and only if } \underline{\lim_{x\to a^+} f(x) = L} \underline{\text{and}} \underline{\lim_{x\to a^-} f(x) = L} .$

Consider the function

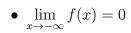
$$f(x) = \frac{x+2}{x^2 - 5x - 14}.$$

Use at least five values of x to approximate $\lim_{x\to -2} f(x)$ and sketch the graph (including the scale).

x	$\frac{x+2}{x^2-5x-14}$
-1.9	-0.1124
-2.1	-0.1099
-1.95	-0.1117
-2.05	-0.1105
-1.99	-0.1112
-2.01	-0.111



Sketch a function f(x) satisfying the following:



•
$$\lim_{x \to \infty} f(x) = \infty$$

$$\bullet \lim_{x \to -1^-} f(x) = -2$$

$$\bullet \lim_{x \to -1^+} f(x) = 2$$

•
$$f(-1) = 0$$

$$\bullet \lim_{x \to 1^+} f(x) = 2$$

$$\bullet \lim_{x \to 1^{-}} f(x) = -1$$

